Chapter 3 “Scientific Measurement”

Section 3.1 Measurements and Their Uncertainty

• OBJECTIVES:
 – Convert measurements to scientific notation.

Section 3.1 Measurements and Their Uncertainty

• OBJECTIVES:
 – Distinguish among accuracy, precision, and error of a measurement.

Section 3.1 Measurements and Their Uncertainty

• OBJECTIVES:
 – Determine the number of significant figures in a measurement and in a calculated answer.

Measurements

• Qualitative measurements are words, such as heavy or hot
• Quantitative measurements involve numbers (quantities), and depend on:
 1) The reliability of the measuring instrument
 2) the care with which it is read – this is determined by YOU!
• Scientific Notation
 • Coefficient raised to power of 10
 • Reviewed earlier this semester!

Accuracy, Precision, and Error

• It is necessary to make good, reliable measurements in the lab
• Accuracy – how close a measurement is to the true value
• Precision – how close the measurements are to each other (reproducibility)
Precision and Accuracy

Accuracy, Precision, and Error

- **Accepted value** = the correct value based on reliable references
- **Experimental value** = the value measured in the lab

Accuracy, Precision, and Error

- **Error** = accepted value – exp. value
 - Can be positive or negative
- **Percent error** = the **absolute value** of the error divided by the accepted value, then multiplied by 100%
 \[\% \text{ error} = \left(\frac{\text{error}}{\text{accepted value}} \right) \times 100\% \]

Why Is there Uncertainty?

- Measurements are performed with instruments, and no instrument can read to an infinite number of decimal places
- *Which of the balances shown has the greatest uncertainty in measurement?*

Significant Figures in Measurements

- **Significant figures** in a measurement include all of the digits that are known, plus one more digit that is estimated.
- Measurements must be reported to the correct number of significant figures.

Figure 3.5 Significant Figures - Page 67

Which measurement is the best?
Rules for Counting Significant Figures

Non-zeros always count as significant figures:

- 3456 has 4 significant figures

Zeros Leading zeroes do not count as significant figures:

- 0.0486 has 3 significant figures

Rules for Counting Significant Figures

Zeros Captive zeroes always count as significant figures:

- 16.07 has 4 significant figures

Rules for Counting Significant Figures

Zeros Trailing zeroes are significant only if the number contains a written decimal point:

- 9.300 has 4 significant figures

Rules for Counting Significant Figures

Two special situations have an *unlimited* number of significant figures:

1. Counted Items
 - a) 23 people, or 425 thumbtacks
2. Exactly defined quantities
 - b) 60 minutes = 1 hour

Sig Fig Practice #1

How many significant figures in the following?

- 1.0070 m → 5 sig figs
- 17.10 kg → 4 sig figs
- 100,890 L → 5 sig figs
- 3.29×10^3 s → 3 sig figs
- 0.0054 cm → 2 sig figs
- 3,200,000 → 2 sig figs
- 5 dogs → unlimited

These come from measurements

This is a counted value
Significant Figures in Calculations

- In general a calculated answer cannot be more precise than the least precise measurement from which it was calculated.
- Ever heard that a chain is only as strong as the weakest link?
- Sometimes, calculated values need to be rounded off.

Rounding Calculated Answers

- **Rounding**
 - Decide *how many* significant figures are needed (more on this very soon)
 - Round to that many digits, counting from the left
 - Is the next digit less than 5? Drop it.
 - Next digit 5 or greater? Increase by 1

SAMPLE PROBLEM 3.1 - Page 69

Rounding Measurements

Round off each measurement to the number of significant figures shown in parentheses. Write the answers in scientific notation.

- a. 3147.21 meters (four)
- b. 0.001 773 meter (two)
- c. 0.792 meters (two)

Be sure to answer the question completely!

SAMPLE PROBLEM 3.2 - Page 70

Significant Figures in Addition

Calculate the sum of the three measurements. Give the answer to the correct number of significant figures.

\[12.32 \text{ meters} + 3.49 \text{ meters} + 8.24 \text{ meters} \]

Rounding Calculated Answers

- **Addition and Subtraction**
 - The answer should be rounded to the same number of decimal places as the least number of decimal places in the problem.

Rounding Calculated Answers

- **Multiplication and Division**
 - Round the answer to the same number of significant figures as the least number of significant figures in the problem.
SAMPLE PROBLEM 3.3 - Page 71

Significant Figures in Multiplication and Division

Perform the following operations. Give the answers to the correct number of significant figures.

- a. 7.55 meters \(\times \) 0.04 meter
- b. 2.10 meters \(\times \) 0.70 meter
- c. 2.4528 meters \(\div \) 8.4

Analyse Identify the relevant concepts.

Perform the required math operation and then analyze each of the original numbers to determine the correct number of significant figures required in the answer.

Sig Fig Practice #2

<table>
<thead>
<tr>
<th>Calculation</th>
<th>Calculator says:</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.24 m (\times) 7.0 m</td>
<td>22.68 m²</td>
<td>23 m²</td>
</tr>
<tr>
<td>100.0 g (\div) 23.7 cm³</td>
<td>4.219409283 g/cm³</td>
<td>4.22 g/cm³</td>
</tr>
<tr>
<td>0.02 cm (\times) 2.371 cm</td>
<td>0.04742 cm²</td>
<td>0.05 cm²</td>
</tr>
<tr>
<td>710 m (\div) 3.0 s</td>
<td>236.6666667 m/s</td>
<td>240 m/s</td>
</tr>
<tr>
<td>1818.2 lb (\times) 3.23 ft</td>
<td>5872.786 lb-ft</td>
<td>5870 lb-ft</td>
</tr>
<tr>
<td>1.030 g (\times) 2.87 mL</td>
<td>2.9561 g/mL</td>
<td>2.96 g/mL</td>
</tr>
</tbody>
</table>

Sig Fig Practice #3

<table>
<thead>
<tr>
<th>Calculation</th>
<th>Calculator says:</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.24 m + 7.0 m</td>
<td>10.24 m</td>
<td>10.2 m</td>
</tr>
<tr>
<td>100.0 g - 23.73 g</td>
<td>76.27 g</td>
<td>76.3 g</td>
</tr>
<tr>
<td>0.02 cm + 2.371 cm</td>
<td>2.391 cm</td>
<td>2.39 cm</td>
</tr>
<tr>
<td>713.1 L - 3.872 L</td>
<td>709.228 L</td>
<td>709.2 L</td>
</tr>
<tr>
<td>1818.2 lb + 3.37 lb</td>
<td>1821.57 lb</td>
<td>1821.6 lb</td>
</tr>
<tr>
<td>2.030 mL - 1.870 mL</td>
<td>0.16 mL</td>
<td>0.160 mL</td>
</tr>
</tbody>
</table>

*Note the zero that has been added.

Rules for Significant Figures in Mathematical Operations

- **Multiplication and Division:** # sig figs in the result equals the number in the *least precise* measurement used in the calculation.

 - 6.38 \(\times \) 2.0 =

 - 12.76 \(\rightarrow \) 13 (2 sig figs)

Rules for Significant Figures in Mathematical Operations

- **Addition and Subtraction:** The number of decimal places in the result equals the number of decimal places in the *least precise* measurement.

 - 6.8 + 11.934 =

 - 18.734 \(\rightarrow \) 18.7 (3 sig figs)

Section 3.3 The International System of Units

- **OBJECTIVES:**
 - List SI units of measurement and common SI prefixes.
Section 3.3
The International System of Units

- **OBJECTIVES:**
 - Distinguish between the *mass* and *weight* of an object.

International System of Units

- Measurements depend upon *units* that serve as reference standards
- The standards of measurement used in science are those of the Metric System

The Fundamental SI Units (Le Système International, SI)

<table>
<thead>
<tr>
<th>Physical Quantity</th>
<th>Name</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>Meter</td>
<td>m</td>
</tr>
<tr>
<td>Mass</td>
<td>Kilogram</td>
<td>kg</td>
</tr>
<tr>
<td>Temperature</td>
<td>Kelvin</td>
<td>K</td>
</tr>
<tr>
<td>Time</td>
<td>Second</td>
<td>s</td>
</tr>
<tr>
<td>Amount of substance</td>
<td>Mole</td>
<td>mol</td>
</tr>
</tbody>
</table>

*Not commonly used in chemistry:

<table>
<thead>
<tr>
<th>Physical Quantity</th>
<th>Name</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luminous intensity</td>
<td>Candela</td>
<td>cd</td>
</tr>
<tr>
<td>Electric current</td>
<td>Ampere</td>
<td>A</td>
</tr>
</tbody>
</table>

Nature of Measurements

Measurement - quantitative observation consisting of 2 parts:

- Part 1 – **number**
- Part 2 - scale (unit)

Examples:

- **20 grams**
- **6.63 x 10⁻³** Joule seconds
International System of Units

- Sometimes, non-SI units are used
 - Liter, Celsius, calorie
- Some are derived units
 - They are made by joining other units
 - Speed = miles/hour (distance/time)
 - Density = grams/mL (mass/volume)

Length

- In SI, the basic unit of length is the **meter** (m)
- Length is the distance between two objects – measured with **ruler**
- We make use of **prefixes** for units larger or smaller

SI Prefixes – Page 74
Common to Chemistry

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Unit Abbreviation</th>
<th>Meaning</th>
<th>Exponent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kilo-</td>
<td>k</td>
<td>tuane</td>
<td>10^3</td>
</tr>
<tr>
<td>Deci-</td>
<td>d</td>
<td>umin</td>
<td>10^1</td>
</tr>
<tr>
<td>Centi-</td>
<td>c</td>
<td>finche</td>
<td>10^{-2}</td>
</tr>
<tr>
<td>Milli-</td>
<td>m</td>
<td>millim</td>
<td>10^{-3}</td>
</tr>
<tr>
<td>Micro-</td>
<td>μ</td>
<td>microm</td>
<td>10^{-6}</td>
</tr>
<tr>
<td>Nano-</td>
<td>n</td>
<td>nanim</td>
<td>10^{-9}</td>
</tr>
</tbody>
</table>

Volume

- The space occupied by any sample of matter.
- Calculated for a solid by multiplying the length x width x height; thus derived from units of length.
- SI unit = **cubic meter** (m³)
- Everyday unit = Liter (L), which is non-SI. (Note: 1mL = 1cm³)

Devices for Measuring Liquid Volume

- Graduated cylinders
- Pipets
- Burets
- Volumetric Flasks
- Syringes

The Volume Changes!

- Volumes of a solid, liquid, or gas will generally increase with temperature
- Much more prominent for **GASES**
- Therefore, measuring instruments are calibrated for a specific temperature, usually 20 °C, which is about room temperature
Units of Mass

- **Mass** is a measure of the quantity of matter present
 - *Weight* is a force that measures the pull by gravity; it changes with location
 - Mass is constant, regardless of location

Working with Mass

- The SI unit of mass is the **kilogram (kg)**, even though a more convenient everyday unit is the gram
- Measuring instrument is the balance scale

Units of Temperature

- Temperature is a measure of how hot or cold an object is. *(Measured with a thermometer.)*
- Heat moves from the object at the higher temperature to the object at the lower temperature.
- We use two units of temperature:
 - **Celsius** – named after Anders Celsius
 - **Kelvin** – named after Lord Kelvin

Units of Temperature

- **Celsius scale** defined by two readily determined temperatures:
 - Freezing point of water = 0 °C
 - Boiling point of water = 100 °C
- **Kelvin scale** does not use the degree sign, but is just represented by K
 - absolute zero = 0 K *(thus no negative values)*
 - formula to convert: $K = °C + 273$

SAMPLE PROBLEM 3.4 - Page 78

Converting Between Temperature Scales

Normal human body temperature is 37°C. What is that temperature in kelvins?

1. **Analyze** List the known and the unknown.
 - Known
 - Temperature in °C = 37°C
 - Unknown
 - Temperature in K
 - Use the known value and the equation $K = °C + 273$ to calculate the temperature in kelvins.

Units of Energy

- Energy is the capacity to do work, or to produce heat.
- Energy can also be measured, and two common units are:
 1. **Joule (J)** = the SI unit of energy, named after James Prescott Joule
 2. **calorie (cal)** = the heat needed to raise 1 gram of water by 1 °C
Units of Energy

- Conversions between joules and calories can be carried out by using the following relationship:
 \[1 \text{ cal} = 4.184 \text{ J} \]

Section 3.3 Conversion Problems

- OBJECTIVE:
 - Construct conversion factors from equivalent measurements.

Section 3.3 Conversion Problems

- OBJECTIVE:
 - Apply the techniques of dimensional analysis to a variety of conversion problems.

Section 3.3 Conversion Problems

- OBJECTIVE:
 - Convert complex units, using dimensional analysis.

Conversion factors

- A “ratio” of equivalent measurements
- Start with two things that are the same: one meter is one hundred centimeters
- Write it as an equation
 \[1 \text{ m} = 100 \text{ cm} \]
- We can divide on each side of the equation to come up with two ways of writing the number “1”
Conversion factors

\[
\frac{1 \text{ m}}{100 \text{ cm}} = \frac{100 \text{ cm}}{100 \text{ cm}}
\]

\[
\frac{1 \text{ m}}{100 \text{ cm}} = 1
\]

\[
\frac{1 \text{ m}}{1 \text{ m}} = \frac{100 \text{ cm}}{1 \text{ m}}
\]

\[
1 = \frac{100 \text{ cm}}{1 \text{ m}}
\]

Conversion factors

- A unique way of writing the number 1
- In the same system they are defined quantities so they have an unlimited number of significant figures
- Equivalence statements always have this relationship:
 \[
 \text{big # small unit} = \text{small # big unit}
 \]
 \[
 1000 \text{ mm} = 1 \text{ m}
 \]

Practice by writing the two possible conversion factors for the following:

- Between kilograms and grams
- Between feet and inches
- Using 1.096 qt. = 1.00 L
What are they good for?

- We can multiply by the number "one" creatively to change the units.
- Question: 13 inches is how many yards?
- We know that 36 inches = 1 yard.
- \[13 \text{ inches} \times \frac{1 \text{ yard}}{36 \text{ inches}} = 0.36 \text{ yards}\]

Conversion factors

- Called **conversion factors** because they allow us to convert units.
- really just multiplying by
 - **one**, in a creative way.

Dimensional Analysis

- A way to analyze and solve problems, by using units (or dimensions) of the measurement
 - **Dimension** = a unit (such as g, L, mL)
 - **Analyze** = to solve
 - Using the units to solve the problems.
 - If the units of your answer are right, chances are you did the math right!

Dimensional Analysis

- Dimensional Analysis provides an alternative approach to problem solving, instead of with an equation or algebra.
- A ruler is 12.0 inches long. How long is it in cm? (1 inch = 2.54 cm)
- How long is this in meters?
- A race is 10.0 km long. How far is this in miles, if:
 - 1 mile = 1760 yards
 - 1 meter = 1.094 yards

Converting Between Units

- Problems in which measurements with one unit are converted to an equivalent measurement with another unit are easily solved using dimensional analysis
- Sample: Express 750 dg in grams.
- Many complex problems are best solved by breaking the problem into manageable parts.
Converting Between Units

- Let's say you need to clean your car:
 1) Start by vacuuming the interior
 2) Next, wash the exterior
 3) Dry the exterior
 4) Finally, put on a coat of wax
- What problem-solving methods can help you solve complex word problems?
 - Break the solution down into steps, and use more than one conversion factor if necessary

Converting Complex Units?

- Complex units are those that are expressed as a ratio of two units:
 - Speed might be meters/hour
 - Sample: Change 15 meters/hour to units of centimeters/second
 - How do we work with units that are squared or cubed? (cm2 to m2, etc.)

Section 3.4 Density

- OBJECTIVES:
 - Calculate the density of a material from experimental data.

SAMPLE PROBLEM 3.9 - Page 86

Converting Ratios of Units

The mass per unit volume of a substance is a property called density. The density of manganese, a metallic element, is 7.21 g/cm3. What is the density of manganese expressed in units of g/m3?

1. Analyze: List the knowns and the unknown.

 Known:
 - density of manganese = 7.21 g/cm3
 - 10 g = 1 kg
 - 10 cm3 = 1 m3

 Unknown:
 - density of manganese = ? g/m3

 The desired conversion is g/cm3 → g/m3. The mass unit in the numerator must be changed from grams to kilograms: g → kg. In the denominator, the volume unit must be changed from cubic centimeters to cubic meters: cm3 → m3. Note that the relationship between cm and m. Cubing the relationship 10^2 cm = 1 m yields $(10^2$ cm3 = 1 m$^3)$, or 10^6 cm3 = 1 m3.

Section 3.4 Density

- OBJECTIVES:
 - Describe how density varies with temperature.

Density

- Which is heavier - a pound of lead or a pound of feathers?
 - Most people will answer lead, but the weight is exactly the same
 - They are normally thinking about equal volumes of the two
 - The relationship here between mass and volume is called Density
Density

- The formula for density is: \[\text{Density} = \frac{\text{mass}}{\text{volume}} \]
- Common units are: \(\text{g/mL} \), or possibly \(\text{g/cm}^3 \), (or \(\text{g/L} \) for gas)
- Density is a physical property, and does not depend upon sample size

Density and Temperature

- What happens to the density as the temperature of an object increases?
 - Mass remains the same
 - Most substances increase in volume as temperature increases
- Thus, density generally decreases as the temperature increases

Density and Water

- **Water** is an important exception to the previous statement.
- Over certain temperatures, the volume of water increases as the temperature decreases (Do you want your water pipes to freeze in the winter?)
 - Does ice float in liquid water?
 - Why?

SAMPLE PROBLEM 3.10 - Page 91

Calculating Density

A copper penny has a mass of 3.1 g and a volume of 0.55 cm\(^3\). What is the density of copper?

1. **Analyze** List the knowns and the unknown.
 - **Knowns**
 - mass = 3.1 g
 - volume = 0.55 cm\(^3\)
 - **Unknown**
 - density = ? g/cm\(^3\)

2. Use the known values and the following definition of density:
 \[\text{Density} = \frac{\text{mass}}{\text{volume}} \]