

Chapter 16 "Solutions"

Section 16.1

Properties of Solutions
-OBJECTIVES:
-Identify the units usually used to express the solubility of a solute.

Solution formation

- The "nature" (polarity or composition) of the solute and the solvent will determine...

Whether a substance will dissolve
How much will dissolve

- Factors determining rate of solvation stirring (agitation)
surface area the dissolving particles temperature

Click to add text

- ObJECTIVES:
-Identify the factors that determine the rate at which a solute dissolves.

Section 16.1 Properties of Solutions

-OBJECTIVES:

-Identify the factors that determine the mass of solute that will dissolve in a given mass of solvent.

Making solutions

- In order to dissolve, the solvent molecules must come in contact with the solute.
- 1. Stirring moves fresh solvent into contact with the solute.
- 2. Smaller pieces increase the amount of surface area of the solute.
$\square \quad$ - think of how fast a breath mint dissolves when you chew it

Temperature and Solutions

- 3. Higher temperature makes the molecules of the solvent move around faster and contact the solute harder and more often.

Speeds up dissolving.

- Higher Temperature Also Usually increases the amount that will dissolve (an exception is gases)

Solids tend to dissolve best

 when:Heated
Stirred
Ground into smaller particles
Gases tend to dissolve best when:

The solution is cold
Pressure is high

Saturation and Equilibrium

(a)

Solute is dissolving

(b)

More solute is dissolving,
but some is crystallizing

(c)

Saturation equilibrium established

How Much?

- Solubility- is the maximum amount of substance that will dissolve at a specific temperature (the units for solubility are: $\quad \mathrm{g}$ solute/100 g solvent)
- Saturated solution - Contains the maximum amount of solute dissolved. $\mathrm{NaCl}=36.0 \mathrm{~g} / 100$ mL water
- Unsaturated solution - Can still dissolve more solute (for example $28.0 \mathrm{~g} \mathrm{NaCl} / 100 \mathrm{~mL}$)
- Supersaturated - solution that is holding more than it theoretically can; a "seed crystal" will make it come out; Fig. 16.6, page 475

Supersaturated Example

-Ever heard of "seeding" the clouds to make them produce rain?
${ }^{-}$Clouds - mass of air supersaturated with water vapor

- Silver lodide (AgI) crystals are dusted into the cloud as a "seed"
-The Agl attracts the water, forming droplets that attract others

Liquids

- Miscible means that two liquids
can dissolve in each other
-water and antifreeze
- water and ethanol
-Partially miscible- slightly - water and ether
- Immiscible means they can't -oil and vinegar

Solubility?

-For solids in liquids, as the temperature goes up-the solubility usually goes up (Fig. 16.4, p.474)
-For gases in a liquid, the effect is the opposite of solids in liquids

- As the temperature goes up, gas solubility goes down
Think of boiling water bubbling?
-Thermal pollution may result from industry using water for cooling

Calculating the Solubility of a Gas

- If the solubility of gas in water is $0.77 \mathrm{~g} / \mathrm{L}$ at 3.5 atm of pressure, what is its solubility (in g/L) at 1.0 atm of pressure?
- The solubility of a gas in water is $0.16 \mathrm{~g} / \mathrm{L}$ at 104 kPa . What is the solubility when the pressure of the gas is increased to 288 kPa ?
- A gas has a solubility in water of $3.6 \mathrm{~g} / \mathrm{L}$ at a pressure of 1.0 atm . What pressure is needed to produce an aqueous solution containing $9.5 \mathrm{~g} / \mathrm{L}$ of the same gas?

Section 16.2 Concentration of Solutions

-OBJECTIVES:

Describe the effect of dilution on the total moles of solute in solution.

Section 16.2 Concentration of Solutions

OBJECTIVES:

Define percent by volume and percent by mass solutions.

Concentration is...

- a measure of the amount of solute dissolved in a given quantity of solvent
- A concentrated solution has a large amount of solute
- A dilute solution has a small amount of solute
- These are qualitative descriptions
- But, there are ways to express solution concentration quantitatively

Molarity
 - Molarity = moles of solute
 liters of solution

Abbreviated with a capital M, such as 6.0 M
This is the most widely used concentration unit used in chemistry.

Calculating the Molarity of a Solution

- A solution has a volume of 2.0 L and contains 36.0 g of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$. If the molar mas of glucose is $180 \mathrm{~g} / \mathrm{mol}$, what is the molarity of the solution?
- A solution has a volume of 250 mL and contains 0.70 mol NaCl . What is its molarity?

Making solutions

Pour in a small amount of the solvent, maybe about one-half Then add the pre-massed solute (and mix by swirling to dissolve it) Carefully fill to final volume.

Fig. 16.8, page 481

- Can also solve: moles $=\mathrm{M} \mathrm{x} \mathrm{L}$
- Sample Problem 16.3, page 482

Dilution

Adding water to a solution will reduce the number of moles of solute per unit volume but the overall number of moles remains the same!
Think of taking an aspirin with a small glass of water vs. a large glass of water

You still have one aspirin in your body, regardless of the amount of water you drank, but a larger amount of water makes it more diluted.

Finding the Moles of Solute in a Solution

- Household laundry bleach is a dilute aqueous solution of sodium hypochlorite (NaClO). How many moles of solute are present in 1.5 L of 0.70 M NaClO ?
- How many moles of ammonium nitrate are in 335 mL of $0.425 \mathrm{M} \mathrm{NH} \mathrm{NO}_{3}$?
- How many moles of solute are in 250 mL of $2.0 \mathrm{M} \mathrm{CaCl}_{2}$? How many grams of CaCl_{2} is this?

Dilution

- The number of moles of solute in solution doesn't change if you add more solvent!
- The \# moles before = the \# moles after
-Formula for dilution: $\mathrm{M}_{1} \times \mathrm{V}_{1}=\mathrm{M}_{2} \times \mathrm{V}_{2}$
- M_{1} and V_{1} are the starting concentration and volume; M_{2} and V_{2} are the final concentration and volume.
- Stock solutions are pre-made solutions to known Molarity. Sample 16.4, p. 484

Preparing a Dilute Solution

- How many milliliters of aqueous $2.00 \mathrm{M} \mathrm{MgSO}_{4}$ solution must be diluted with water to prepare 100.0 mL of aqueous $0.400 \mathrm{M} \mathrm{MgSO}_{4}$?
- How many milliliters of a solution of 4.00 M KI are needed to prepare 250.0 mL of 0.760 M KI ?
- How could you prepare 250 mL of 0.20 M NaCl using only a solution of 1.0 M NaCl and water?

Percent solutions can be expressed by a) volume or b) mass

- Percent means parts per 100, so
-Percent by volume: = Volume of solute $\times 100 \%$ Volume of solution
-indicated \%(v/v)
-Sample Problem 16.5, page 485

Calculating Percent (Volume/Volume)

- What is the percent by volume of ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}\right)$ in the final solution when 85 mL of ethanol is diluted to a volume of 250 mL of water?
- If 10 mL of propanone $\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}\right)$ is diluted with water to a total solution volume of 200 mL , what is the percent by volume of propanone in the solution?
- A bottle of the antiseptic hydrogen peroxide $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$ is labeled $3.0 \%(\mathrm{v} / \mathrm{v})$. How many $\mathrm{mL} \mathrm{H}_{2} \mathrm{O}_{2}$ are in a 400.0 mL bottle of this solution?

Section 16.3

 Colligative Properties of Solutions
-OBJECTIVES:

-Identify three colligative properties of solutions.

Colligative Properties

-Depend only on the number of dissolved particles
-Not on what kind of particle
-Three important colligative properties are:
Vapor pressure lowering
Boiling point elevation
Freezing point lowered

Percent solutions

- Percent by mass: $=$ Mass of solute $(\mathrm{g}) \times 100 \%$ Volume of solution (mL) Indicated \%(m/v)
- More commonly used
-4.8 g of NaCl are dissolved in 82 mL of solution. What is the percent of the solution?
- How many grams of salt are there in 52 mL of a 6.3% solution?

Section 16.3 Colligative Properties of Solutions - OBJECTIVES:

Explain why the vapor pressure, freezing point, and boiling point of a solution differ from those properties of the pure solvent.

Figure 16.14 Particle Concentrations in Solutions

Vapor Pressure is lowered

-The bonds between molecules keep molecules from escaping.

- In a solution, some of the solvent is busy keeping the solute dissolved.
- Lowers the vapor pressure
- Electrolytes form ions when they are dissolved, making more pieces.
$-\mathrm{NaCl} \rightarrow \mathrm{Na}^{+}+\mathrm{Cl}^{-}$(= 2 pieces)
- More pieces $=$ bigger effect

Freezing Point is Lowered

- Solids form when molecules make an orderly pattern - crystals
- The solute molecules break up the orderly pattern.
-Makes the freezing point lower.
-Salt water freezes below $0^{\circ} \mathrm{C}$
- How much lower depends on the amount of solute dissolved.

Section 16.4

Calculations Involving Colligative Properties
-OBJECTIVES:
Solve problems related to the molality and mole fraction of a solution.

Boiling Point is Elevated

-The vapor pressure determines the boiling point.

- Lower vapor pressure means you need a higher temperature to get it to equal atmospheric pressure
-Salt water boils above $100^{\circ} \mathrm{C}$
- The number of dissolved particles determines how much, as well as the solvent itself.

Section 16.4

 Calculations Involving Colligative Properties-OBJECTIVES:
-Describe how freezing point depression and boiling point elevation are related to molality.

Molality (abbreviated m)

-a new unit for concentration

- $m=$ Moles of solute
kilogram of solvent
- $m=$ Moles of solute 1000 g of solvent
-Sample Problem 16.6, p. 492

Freezing Point Depression

-The size of the change in freezing point is also determined by molality.
$-\Delta T_{f}=-K_{f} \times m \times n$
$\Delta \mathrm{T}_{\mathrm{f}}$ is the change in freezing point
$-\mathrm{K}_{\mathrm{f}}$ is a constant determined by the solvent (Table 16.2, page 494).
on is the number of pieces it falls into when it dissolves.

Boiling Point Elevation

- The size of the change in boiling point is determined by the molality.
$-\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{K}_{\mathrm{b}} \times m \times n$
$-\Delta T_{b}$ is the change in the boiling point
- K_{b} is a constant determined by the solvent (Table 16.3, page 495).
- n is the number of pieces it falls into when it dissolves.
- Sample Problem 16.9, page 496

Mole fraction

-This is another way to express concentration

- It is the ratio of moles of solute to total number of moles of solute plus solvent (Fig. 18-19, p.522)

$$
X=\frac{n_{a}}{n_{a}+n_{b}}
$$

Sample 16.7, page 493

Key Equations

- Note the key equations on page 498 to solve problems in this chapter.

